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The journey of this presentation.

> Motivation

» Post-compression experimental campaigns

» Post-compression at ELI-NP

» Conclusion and perspectives




10 PW at ELI-NP

Beyond 10 PW class lasers...
Exawatt class
Applications
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Experiments requirements:
* Intense laser pulses
* Shortest pulse duration
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Evolution of energy gain with accelerator, laser and plasma parameters.

Caizergues et al., Nature Photonics, 14, 2020




el
nuclear physics

SPM DMS

_WMWWQ _— Self phase moJcrluIation (SPM)
@ Dispersion management System (DMS)

1.0 ™= Input 7, = 22.0 fs
T, (-70.00 fs?) -> 9.00 fs

o —— .

0.5

Intensity [ a.u. ]
;
|
!
!
/
~—
o
Phase [ rad ]

) Fourier Limit

Wavelength [ nm ]

® Aw*x At =Kk

= TR Requirement: Spectral phase=constant
;

Time [ fs ]

(©)

Fig. 1. Post-compression using spectral broadening _
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Fig. 2. The main optical properties investigated in this thesis

“’ denotes a recent investigated property 7
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-large B integral studies
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Fig. 2. (a) Spectra, (b) ACFs, and (c) pulse shapes at the input (thin curves) and output
(bold curves) of the CafCA system: experimental (solid red curves) and theoretical (dotted
blue and green curves). Parameters of the pulses are shown in Table 1 (B=13). The spectrum
of the input pulse has sharp tails due to strong nonlinearity of parametric amplification in the
laser PEARL. The spectrum of the output pulse, on the contrary, is limited by the bandwidth
of the used spectrometer (840. .. 990 nm).
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Fig. 3. Work performed for 4 experimental campaigns

Key aspects:

* Input laser parameters

* Type of the material, quality and LIDT

* Dazzler and Deformable mirror (DM)

* Chirped mirrors size (sub aperture post-compression)




Samples:

 BK7 (1&2 mm)
* FS(5mm)
 SF5(1 mm)

e SF5+BK7 (1 mm + 1 mm)
e Zeonor (0.1 mm)

Fig. 4. Experimental setup used in E4, 100 TW.

where: PM-parabolic mirror, CM-chirped mirrors, M-mirror, BS-Beam splitter, L-lens, SRS- Spatially Resolved Spectrometer
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- Statistics
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Fig. 6. DM low energy Zernike Fig. 7. Focal spot improvement  Fig. 8. FF images without (Left) and with
coefficients correction using DM at low energy (Right) DM correction for BK7
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Fig. 9. Measured and estimated broadening
@ 1 J (line) and 2 J (dashed)

E.A. Khazanov et al, Post-compression of femtosecond laser pulses using self-phase modulation: from kilowatts to petawatts in 40 years, Quantum Electron. 52 208 (2022)
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Spectral Structure (BK7 2.20 mm)
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Fig. 10. Simulated spectral broadening and pulse duration
for 2 mm BK7 at 2 J, 1 compression stage

Input:
PyNLO library of Python
2 mm BK7, 2 J, 1 compression stage

Output 5.25 fs @ELI-NP
100 TW




» ELI-NP; 26 fs-11 fs- 5fs (>5 fold compression 2 J)
v’ Complete metrology of post-compressed pulses
v’ Stability by mastering GDD and TOD;

v" TSR and DM factor
v’ Increase in intensity;
v Proof of concept for close to single cycle at 2

A
[ \

Electrons, Protons, Neutrons, Gamma
Lasers engineering
Medical field

Exawatt concept
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Fig. 11
Evolution of energy gain with accelerator, laser and plasma parameters.
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Fig. 12. Secondary sources: electron and
gamma, using the results of ELI-NP campaign

C. Caizergues , S. Smartsev, V. Malka, and C. Thaury, Phase-locked laser-
wakefield electron acceleration, Nature Photonics, 2020

Courtesy of V. Horny and P. Tomassini
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Post compression experiment,
19:30, Friday, ELI-NP, 100 TW

Happiness after the first
STCs were measured

Thank you for your attention!

Multumesc pentru atentie!

Let there be questions!
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