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Fig. 1. The structure of single-shot LIDT test bench.
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Fig. 4. The damage information extraction procedure. Compression process is performed on the beam profile (a) and damage pattern (b, c). By matching the compressed
image of beam profile (d) and damage pattern (e), the damage information could be obtaind. Fig. 10. The relationship between LIDTs and beam size on three type coatings.

Z. Liu, Y. Zheng, F. Pan, Q. Lin, P. Ma, and J. Wang, “Investigation of laser induced damage threshold
measurement with single-shot on thin films,” Applied Surface Science, vol. 382, pp. 294-301, Sep.

2016, doi: 10.1016/j.apsusc.2016.04.093.
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FIG. 3. (a) Spatial profile of the 7.3 mm diameter beam at the sample plane
as measured by a CCD camera. The beam contrast is about 20%. (b) The
corresponding typical Flat-In-Time (FIT) temporal profile at 351 nm of around
5ns.

Damage cartography w/wo phase objects

FIG. 2. Simplified experimental setup: Phase objects (A) are inserted between the focusing lens and a beam splitter that directs a part of the beam to diagnostics. A CCD
camera (B) records the spatial profile on a plane equivalent to the sample plane. After each shot a long working distance microscope observes the irradiated area (C). The
inset illustrates the focusing beam and the main distances.

L. Lamaignere et al., “A powerful tool for comparing different test procedures to measure the probability and
density of laser induced damage on optical materials,” Review of Scientific Instruments, vol. 90, no. 12, Art.
no. 12, 2019, doi: 10.1063/1.5122274.
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Diffraction pattern shaped damage Small exfoliation

Large aperture LIDT is mandatory!




Experimental
setup
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Detection methods for LIDT:
Microscope (large spots)

——— — I Nomarski Microscope
r 7 ‘m
I | SEEE—
I o] Samples:
LIDT: Scattered Ny - === " . e .
Detectic;n ere : 0 [ Mirror 1 (Ag+3 layers SiTiO2), Mirror 2 (Ag+1 layer
1 1 :LIDT: Onsite  Si02), 2 Chirped mirrors, FS, IDEX 2, IDEX 4,
: ¥ Reflection/ | ,Detection LASEROPTIK, Optoman, Optosigma, ZEONOR
L A ; Transmission |
Beam ltarget | I Nr of shots: 1,10, 100, 1000, 10000
Dump Energy: 8 mJ-160 m)

e 1 Spot size: 3-7 mm
Pulse duration: 25 fs

Spectral Parabola 1.2 m
Broadening

Experimental team: Gabriel Bleotu, Alice Dumitru,
Cristian Alexe, Andrei Naziru, Stefan Popa, Dan Matei,
P -PECUOMELEr gy Daniel Ursescu (ELI-NP), Tamas Somoskoi (ELI-ALPS)
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Damage image (from optical Laser beam profile
microscope)
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Overlap analysis

Laser




Why? * This ensures the profiles are of the same
size, as the camera pixel size can differ
from the size on the detector.

What? * This algorithm finds the optimal
parameters for resizing (with reference
(0,0)) the laser intensity profile.

How? * Variables to optimise: resizing
parameters, intensity threshold.
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Overlap analysis
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Overlap analysis




Why?

What?

How?

* This ensures that for the data analysis
part of the algorithm, the two images
match in position.

* This algorithm finds the optimal
parameters for translation.

* The variable to be optimized: number of
laser pixels above intensity threshold
matching with damaged pixels.
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Overlap analysis
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Overlap analysis
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LIDT curve
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Ag (SiO,) 10 The damage profile was well defined, hence the
LIDT curves were less noisy and with much

Ag (Si0,) 100 clearer boundaries between damaged and
undamaged.

Ag (SiO,) 1000

CMHT 500 Due to less well defined damage (and poorer
picture quality), the curves are also less well

CMHT 1000 defined and have a lot more noise.

CMHT 10000




Damage probability

Damage Probability
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e Current results are promising, but...
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Accuracy < 75%, noise+can’t estimate total damage Some results seem to be... inconsistent

threshold.
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outlook

wn
=
2
>
io
a
-
S
8,
O
>
e




With special thanks to:
Chauvin Adrien

Daniel Kramer

from ELI Beamlines

(Differential interference
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Damage profile Laser profile

Defocus changes laser profile size, also energies per
shot/angle of sample were different.

Quite intense periodic noise patterns!

TBD: Rotation algorithm,
neglected due to relatively small

errors from lack of one and Resizing program isn’t very accurate, and now we have
|neff|C|ency time wise. (<4%) both the laser profile and damage with real coordinates.




Current work: periodic noise patterns el
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Too much noise? Use a Laplacian! (and a high enough threshold for the
Laplacian values)
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Our rotation was off only by 0.0122 radians (0.7 degrees) to the optimal one, accuracy only
improved by 0.12%! (85.52->85.66%)




Defocus (mm)
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Pixel size of damage profile

Pixel size of laser profile (3.45 um)




First large aperture LIDT experiment performed with fs laser pulses;
Data analysis provided results for Ag (SiO,) and chirped mirrors.
Large aperture LIDT will yield much better statistics -> better
characterisation of damage thresholds for materials, possibly uncover
damage mechanisms;

Work in progress: better algorithms, better damage and laser image
The results should help in characterizing damage more accurately,
control it better, reducing the risk of damage and pushing the
boundaries further with any current or future experimental setups to
higher powers.

Possible use in testing mirrors produced by the upcoming COMP
facility at ELI-NP.
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