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The light elements have been produced in the early stages of the Universe
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i observed abundance is 3-4 times
' lower than expected from BBN '
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1994: 3H (a,y) ’Li reaction at low energies
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target detection with Ge detectors (<3.7 MeV)
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Due to restricted use & health/safety, an expeiment with a tritium taret cannot be performed anyor
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1994: 3H (a,y) ’Li reaction at low energies (E, < 3.7 MeV)
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target detection with Ge det
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THE RECIPROCITY THEOREM:
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*Photons: 2j, +1 = 2
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2017 and 2023: "Li (y, a) SH reaction (E,: 3.7 - 10 MeV)

4
target l detectlon with Si detector array




2017 and 2023: "Li (y, a) *H reaction (E,: 3.7 - 10 MeV)
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target detection with Si detector array
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SIDAR: Sllicon Detector ARray B
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2017:

The measurement
of the "Li (y, @) *H
reaction
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Astrophysical S-factor [keVb]
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Preseptdata = C. Brune taI'(199'4) '

Potengial Model (P. Mohr)

R-ma tx direct contribution

R-matrix resonang contributions

--=-= R-matrix (Descouvemont et al, 2004)

Potential Model (P. Mohr)
— R-matrix (Present)

Potential Model (NACRE-II, 2013)

4.652 Me
7.454 MeV
6.404 MeV
0 1 2 3 4 o
= C.Brune etal (1994) (b)

April 2023

A new measurement
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The ground state cross-section of the inverse “Li (y, &) >H reaction

Preliminary results

Quantity Uncertainty
B Events no ~ 5-18 %
d Intensity 10%
Li-7 atoms no 10%
gl Efficiency 1%




\ A . '. : ,,'l./ y o . : ..'
The ground state cross-section of the direct *H (a,y) ’Li reaction
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The Astrophysical S-factor of the direct *H (a,y) ’Li reaction

\

Preliminary results

1
0.989534 - Z,Z, J—-




| decribes two-body

reactions by adjusting S

Y the parameters of the
nuclear structure

parameters mostly
related to the energies
i and the partial widths

of the nuclear levels |

\ | sunable for Iow-energy nuclear reactlons Involving

charged partlcles hotons and neutrons
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Lithium 7 nuclear levels schem Measurement of the 7Li(y,t)*He .

ground-state cross section between
E,= 44 and 10 MeV, M. Munch, C.

-

Matei, S.D. Pain, K.A. Chipps, et al., -
Phys. Rev. C 101, 055801 (2020) |

11240

E[MeV] JT I',[MeV] IyleV]
0 3/2 - ANC=3.4fm'/?2 p=3.256 nm
0.4776  1/2 - ANC=3.1 fm1/?

9670~ 400KeV 3H: 2%, ¢:? %, n:?% ¥2 =00 = L200Rell I sl B

4.652 712 - 0.069 0.09
6.604 5/2 - 0.918 0.27
7.454 5/2 - 0.17 0.29
?IE-ETEE—%SO 03KeV¥ 3H:?%, 0.7 % 9.09 2 - 0.91 25
10 1/2 - 9.24 370
10 1/2 + 10.6
10 3/2 + 10.4
10 5/2 + 10.0

1/2-————477.6 73F§
L 0.0STABLE 477.5395
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R-matrix - AZURE2 R Measurement of the ’Li(y,t) *He
g 10 '\ '\ - ground-state cross section between
: . : . . g, \“\

N\ 1\ E,= 4.4 and 10 MeV, M. Munch, C.

A L\ Matei, S.D. Pain, KA. Chipps, et al.,
' \ + Phys. Rev. C 101, 055801 (2020) |
E[MeV] JT I',[MeV] IyleV]

— R-matrix o 0 3/2-  ANC=3.4fm/2 p=3.256 nm
R-matrix resonant contributions
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R-matrix applied on the 2023 and 2017 data
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R-matrix resonant contributions
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The reaction 3H (a ¥) “Li is important due to the dlscrepancy between the theoretical models

¥ and the experimental data and is more efficiently studied through Its mverse reaction
— =S W L 4

| HIyS, 2017: The ’Li phodisintegration for E,:4.4-10 I\/IeV using a Si detector array 9 below

S meli @8 Nuclear

X 6 MeV the comcrdences have been separated only In the thrnner detectors

»

HIlyS, 2023: The 7Ll phodlsmtegratlon forE,: 3.7 - 6 MeV using a Si detector array (Improved ==
set-up) —> clear separation of the comcrdences the background affecting only the lowest energy

-

ll The preliminary Astrophysical S-factor has been extracted = A preliminary R-matrix fit
S (Azure2) has been performed over the results from 2023, together with the results from 2017

FErT 1 \N R ' 20
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The reaction 3H (a ¥) “Li is important due to the dlscrepancy between the theoretical models

¥ and the experimental data and is more efficiently studied through Its |nverse rection.
o . e A

| The 7Ll phtodisintegration has been studied by our team in 2017 at HIyS for E,: 4.4 - 10 MeV

*

Sl Using a Si detector array

A new experiment Wlth an improved set-up has been performed In Aprll 2023 at HIyS for E
3.7 - 6 MeV, the background affecting only the lowest energy.

.’/ . > \

ll The preliminary Astrophysical S-factor has been extracted. The results from 2023, together with
= the results from 2017, have been fitted using the Azure 2 code to apply the R-matrix formalism.

| LR 1\ S, T ' 20
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Set-up at HIyS el

High Intensity
vy Source

coherent radiation

electron beam

~

Energy:
1 MeV -100 MeV

accelerator

~electron source (gun)



m eli
Gamma beam energy measu rement

Ge DETECTOR + ATTENUATORS

Calibrated using background Known energy loss
e E,=E .t + E
. Y det loss 39 35 cm
of
copper

channel number - 11



Gamma beam Intensity measurement

Measuring
continuously

Intensity

\Pb glass

]

gamma beam

I=10'e_”x

Thickness

m el

nuclear physics

Nal Detector

Attenuators

|||H|H|/ cion
\ efficiency

]
]
]
]
No
Attenuation 4-
Value

Log(l ntensity)

Thickness

Pb glass intensity
calibration

\

Intensity measurement
during the run
12



Gamma beam intensity measurement m eli

nuclear physics

deuterium photodisintegration

d+y=n+p+ 2.2MeV

n

0 P \ I /IO

amma beam I
g lﬁl ld —n
/
P l \P
n

Liquid scintillator = n detector " Egamma — 2.2 MeV

E, = >

N7 of neutrons:
EN = Opnotodis * Na * | 13
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ELISSA vacuum chamber i nuclear physics
detector Target thickness measurement
target
MHV-4
[> '

source | G
@ > T r u e [> [_h—P MPR-16 MSCF-16 _l

thickness | e
241 Am- ‘ 9) - »{ MADC-32 ——» VME —»{ PC
239 Pu- 8
244 Cm [“—> MPR-16 MSCF-16

DSSSD: W1

(b) Rear side.
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Energy loss (MeV)

Detected energy (MeV)

Strip no.

[S]
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Energy loss (MeV)
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5.325
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5.315

Detected energy (MeV)

o
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Strip no.
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" Strip no.

Energy loss (MeV)

Detected energy (MeV)

LiF #3

el

nuclear physics




Energy loss (MeV)

Results LiIF #1

—> Substrate: Mylar (135 pg/cm?)

—> Deposed material: LiF (expected 131 pg/cm?

o)
-
P

[=]
o
w
Wi

0.091

- central
~ values

L o

Alpha energy (MeV)

Energy Loss
(MeV)

Thickness
(um)

Thickness
(ug/cm?)

0.138 (+/-) 0.003

0.740 (+/-) 0.013

194.99 (+/-) 2.81

0.132 (+/-) 0.001

0.728 (+/-) 0.006

191.83 (+/-) 1.33

0.126 (+/-) 0.001

0.728 (+/-) 0.006

191.83 (+/-) 1.33

138,37 (+/-) 1.48 pg/cm?

Results LIF #2

meli

—> Substrate: Mylar (135 pg/cm?)

nuclear physics

—> Deposed material: LiF (expected 74 pg/cm?)

0,053

=3 =3
= =
il o
— r~

-

Energy loss (MeV)

“central
~values

,

: Allpha energy (MeV)

Energy Loss
(MeV)

Thickness
(um)

Thickness
(ug/cm?)

0.052 (+/-) 0.001

0.277 (+/-) 0.005

72.99 (+/-) 0.70

0.050 (+/-) 0.001

0.277 (+/-) 0.002

72.99 (+/-) 0.28

0.047 (+/-) 0.001

0.277 (+/-) 0.002

72.99 (+/-) 0.28

72.99 (+/-) 0.42 pg/cm? 19
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