

Physical concepts of stellar evolution

Thursday 27 February 2025 - Tuesday 13 May 2025

ELI-NP Office Building

Scientific Programme

Week 1: (class on Thursday): Measuring the Universe with stars, Scales and nomenclatures, star classifications.

Week 2: Measuring the Universe with stars, Scales and nomenclatures, star classifications.

HWK: *Venus transit, the astronomical unit (AU), Sun's Bolometric Magnitude.*

Week 3: Reaction theory of stars.

Week 4: Reaction theory of stars.

Week 5: Reaction theory of stars.

HWK: *Calculate stellar lifetime of ^{12}C , ^{14}N , the CNO cycle (age of oldest, M5).*

Week 6: Stellar burning: hydrogen burning, the standard solar model, solar neutrinos and Neutrino detections.

HWK: *Solar neutrino flux.*

Week 7: Stellar Burning, helium burning, C/O ratio, UConn-ELINP laboratory measurements.

Week 8: Big Bang Nucleosynthesis, Critical Density, Dark Matter, Neutrino families, Primordial Deuterium and Lithium.

HWK: *HR diagram of M5 (age of the oldest stars).*

Week 9 (class on Thursday): Stellar Burning and supernova (SNela), neutrino cooling, URCA process.

Week 10: Super nova remnants. The Chandrasekhar and Oppenheimer-Volkoff limits.

Week 11: Students' 10 minutes presentation of a topic of their choice.