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Section 1)
Summary of student’s training coarse for the alighnment
of off-axis parabolic mirror




Typical optical setup in laboratory
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Reminder of properties of off-axis parabolic mirror

Parabolic Mirror

 If one cuts paraboloid according to
light blue line
-> On-axis parabolic mirror

 If one cuts paraboloid according to
aimasatign HGNt green line
-> Off-axis parabolic mirror

* Angle of Off-axis parabolic mirror is
defined as 6 (Full-angle) or 6/2 (AQI,
angle of incidence) in specification
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lllustration is cited from Thorlabs page:
https://www.thorlabs.co.jp/newgrouppage9.cfm?objectgroup_id=14211 4



Spatial image focusing by off-axis parabolic mirror

Astigmatic case (misaligned at a few degrees

Focal-image with objecf;tive lens
after OAP optimization

Did you get 2D Gaussian focal image ?



Important mindset to tackle the experimental research

* Make a good practice to keep asking “reasoning” to yourself when you take
any actions. Improving level of consciousness is important for scientific
discussion

* You can explain your optical configuration with the principle behind the setup
* You can explain things with the precision
* You can make your reference to consider unknown issues in real experiment

* Basic cycles for experimental research

e Define your way scientifically (i.e. make hypothesis & reference)
Execute your way
Evaluate your way, that is, consider why your way is correct or wrong
Modify your way if it is imperfect
Conclude your study
Outlook your study for the future



What you learned though this training ?

You should learn how to

* Make Alignment of mirrors and beam expander

e Control divergence of beam expander (Collimated laser beam)
* Make alignment towards OAP (angle of incidence to OAP)

* Make alignment of OAP (angle of outgoing from OAP)
 Calibrate magnification

e Optimize focal-spot image

 Evaluate focal-spot size (data analysis)

* Present your activities to the audiences



Section 2)
Reality of handling off-axis parabolic mirror for PW-class
experiment with Ti:Sa. high-power laser system




Preparatory alignment of parabolic mirror with HeNe Laser

CV lens with F500 mm
OAP with F520 mm




Preparatory alignment of parabolic mirror with HeNe Laser

Beam Expander
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Preparatory alignment of parabolic mirror with HeNe Laser

at focal spot at -1 mm off-focal spot

Before Adjustment

at focal spot at -1 mm off-focal spot

After Adjustment

» Set the camera position and set the Camera gain to see the change of astigmatism clearly.

e Adjust Yaw & H to keep the image on the camera center to get symmetric ring pattern.

* Adjust Pitch & V to keep the image on the camera center to get symmetric ring pattern.
* Pitch & V would be almost fine by default because it is less sensitive to off-axis angle direction.




Fine adjustment with ring pattern

For Yaw & H.

(a)
o

For Pitch & V.
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Red dotted line is eye guide for you




Fine adjustment with focal-image and intensity

* Move the camera in laser propagation direction to look at focal spot.

e Adjust Yaw & H to keep the image on the camera center to get the smallest spot size as well
as the highest intensity spot.

* Adjust Pitch & V to keep the image on the camera center to get the smallest spot size as well
as the highest intensity spot.



Appendix) Adjustment of Yaw & H or Yaw & L

* Adjustment of Yaw & H was mainly shown in this training to minimize
astigmatism resulting in a beautiful focal beam shape.

* Another consideration is the adjustment of Yaw & L. The both adjustments
should have advantages/disadvantages as well as easiness/difficulty, in
particular it depends on the off-axis angle of your parabolic mirror.

* Different choices of the way can change sensitivity to the angular correction,
shifting effect of the beam position from the center of mirror surface,
movability of your target at focus, chang of focal point by the operation.

=>» We leave this point an open question.

=» Consider this point next chance when you are involved in the experiment
under the realistic constraints !



OAP commissioning with He:Ne Laser for 0.1 PW experiment

Output of CMOS Camera

Output of CMOS Camera
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Another example
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ldeal 2D focal image for gaussian beam and flat-top beam

~ 2D Fourier Transform

2D spatial profile at focus

2D spatial profile before focus

(Under Paraxial condition)

2D Gaussian field ; ;

2D circular flat-top field

........................

2D Gaussian field

2D Airy-disk field
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Note: Your observable on camera is relevant to # of photons n,(x,y

(# of photron « square of output field)

Figure is cited from

) |. Gris-Sanchez, D. Van Ras, and

T. A. Birks, Optica 3, 270-276
(2016). 17



Gaussian image at focus (Circular Gaussian beam input)
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Airy disk image at focus (Circular flat-top beam input)

Airy-disk function Diffraction-limited diameter
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Focal spot image in 0.1 PW Ti:Sa. real beam BEFORE DM optimization
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Even after optimizing OAP position by HeNe laser, real beam is not close
to ideal focal beam
-> Need optimization by deformable mirror in practice.
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Controlled parameters for real beam

2D spatial profile before focus

2D Gaussian field

2D circular flat-top field

2D Fourier Transform
(Under Paraxial condition)

2D spatial profile at focus

________________________

2D Gaussian field

2D Airy-disk field
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A(xy,yo) : Field Amplitude

W (xq,vo): Wavefront

Aberration (Astigmatism etc) <-> wavefront distortion
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Wavefront control
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Expression of wavefront by Zernike polynomials

Table 2. First 37-term orthonormal Zernike circle polynomials under the Noll indices [25, 36].

n\m j n m Zi(p, 0) Zi(x, y) Aberration
0 1 0 0 1 1 Piston
2 1 1 2pcosf 2 2x x-tilt
3 1 2psind [ ] 2y y-tilt
1
4 2 0 V3207 - 1) V3R2(X2 4% = 1] Defocus
5 2 /6p*sin26 2/6xy 45° Primary
astigmatism
2 6 2 V6p’ cos20 VB —y?) 0° Primary
astigmatism
3 7 3 1 V8(3p® — 2p)sind V8Y[3(x2 +37) —2] Primary y-coma
8 1 V8(3p° —2p)cosh VBx[3(F +) = 2] Primary x-coma
9 3 V/8p sin30 V8y(3x% —y?)
10 3 V'8p® cos 30 V8x(x% — 3y%)
4
11 4 0 /560 —6p2+1) V3E[6(xE + )7 —6(x2 +32) + 1] Primary spherical
aberration
5 12 2 V10(4p* —3p?) cos26 V10 =y ) [4(x* +y%) — 3] 0° Secondary
astigmatism
13 2 V10(4p* —3p%)sin20 2V 10xy[4(x* 4 v*) — 3] 45° Secondary
astigmatism
6 14 4 10p"cos40 VI0[(x* 4 y%)? — 8x%y7]
15 4 /10p*sin40 4/ 10xy(x* — %)

Figure 7. Pyramid of the non-normalized Zernike circle polynomials up to the sixth degree under the Noll indexing scheme.

Zj(p,ﬂ) ZZ:Z(,O,H) [3]
2(n+ )R} (p)cosmB, m # 0, j is even,
V2(n+ )R (p) sinmf, m # 0, j is odd,
\/ngl(p)? m =0,
3)

[1] — [3] : Kuo Niu and Chao Tian 2022 J. Opt. 24 123001 (2024)
[4]: https://www.irasutoya.com/2013/02/blog-post_6105.html

Blue triangle: Tunable range by typical
deformable mirror




Focal spot image in 0.1 PW Ti:Sa. real beam AFTER DM optimization
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Focal spot image gets round shape after optimizing deformable mirror

If you still see elliptical shape horizontally (long axis horizontally), it might come from
angular chirp effect (i.e. parallelism of gratings is lost) 24



Focal spot image in 0.1 PW Ti:Sa. real beam (after DM optimization)
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—— Blue shows theoretical curve for 800 nm

Theoretical curve give an evaluator how good your focal image is.

But note theoretical curve itself has some uncertainties (Supper-Gaussian beam,
broadband etc.)
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Angular-chirp by compressor

Grating-based Pulse Compressor

Input pulse

Chriped _ broadened higher peak power

w}l/\ﬂp_h? L qj‘lu

Grating 1 Grating 4

Wavelength
Tuning <

Grating 2 Grating 3

Figure 3: Principle of a Grating Compressor.

Figure is cited from
https://www.meetoptics.com/academy/pulse-compressors

Pair 1) Gr1 + Gr2
Pair 2) Gr3 + Gr4

Outpult Pulse, re-compressed,

If Pair 1 and Pair 2 don’t have
symmetric angle, horizontal spatial
spreads is created as output from

Gr4.

It results in asymmetric divergence
for the laser beam, so your focal
spot should be elliptical

Wavelength dependent focal shape

can be found if angular chirp
OCCUrs.
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Steps to the best focus for real experiment at Ti:Sa. HPLS

* Optimize the alignment of off-axis parabolic mirror by using a reliable
calibration light source such as HeNe

e Confirm the alignment of pulse compressor at laser system
e Understand aberration of real Ti:Sa. laser in your focusing system
* Wavefront correction by deformable mirror

* If necessarily, angular chirp correction ((= Fine correction of alignment of
gratings) can be made at laser system with careful discussion



Summary

Summary

* You got some hints for actual alignment of off-axis parabolic mirror
for real experiments with 0.1/1/10 PW laser system.

* You had some reference experience to consider something when you
are faced on the problem of focal-spot image for your future
activities.
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