Peak Laser Intensity – Nonideal Vacuum Role

Dana Dumitriu

27 mai 2021
World map of lasers with peak power >100TW.
FIG. 8. World map of laser with peak power 1 PW.
The current high-energy/high-power lasers globally (those that are operational represented by circles with continuous borders; those under construction represented by circles with dashed borders; or those that are decommissioned represented by octagons). The diameter of the symbol is logarithmically proportional to laser pulse energy and the colour indicates the laser media used in the final amplifiers: Ti:sapphire (red), Nd:glass (grey), Yb:X (orange), Cr:X (yellow), optical parametric amplification (purple-blue), or gas (pink).

Petawatt lasers of differing specifications are needed to access a wide variety of science applications.
Different regimes of strong field physics as a function of plasma density and laser intensity (left scales) / laser power (right scale).

Timeline of the QED-plasma studies envisioned as a two-stage process with a facility at intermediate laser intensities for the study of fundamental strong-field QED processes, and a multi-beam facility at the highest laser intensities to study the interplay between collective plasma effects and strong field quantum processes.
Strong Field Quantum Electrodynamics with high power lasers and particle beams

The cube of theories, illustrating the relation of Strong Field QED to Quantum Mechanics, Special Relativity, and Quantum Field Theory, as well as typical process happening in strong electromagnetic fields.
Peak laser intensities for specific Nd:glass-based lasers

• the Vulcan PW in the UK at 1×10^{21} W/cm2 (2004);

• the Ti:sapphire based HERCULES laser at the University of Michigan, USA at 1×10^{22} W/cm2 (2004)

• J-KAREN-P in Japan at 1×10^{22} W/cm2 (2018)

• record intensity of 5.5×10^{22} W/cm2 was demonstrated at the CoReLS laser (2019)

• Even the highest-peak-power laser systems (10 PW and beyond) proposed or already in commissioning make no exception to this trend and largely predict intensities of only up to 10^{23} W/cm2 (notably ELI, EP-OPAL, SULF and SEL).
• At the moment, femtosecond lasers based on the chirped pulse amplification (CPA) technique are regarded as the most reliable approach to realize the highest peak power.

• After being amplified, compressed, and focused, the peak laser intensity can reach up to $10^{22} - 10^{23} \text{ W/cm}^2$. The 10 PW-class laser facilities, such as ELI, Apollo, Vulcan and SULF aim at boosting the focused intensity by another tenfold.

• Ambitious plans of 100 PW-class have been proposed worldwide, where the peak intensities of 10^{25} W/cm^2 are anticipated. Furthermore, efforts have also been paid in exploring new mechanisms to generate exawatt–zettawatt lasers. At such extreme light intensities, particle acceleration towards 10–100 GeV for leptons and 0.1–10 GeV/nucleon for ions is to be expected.

• Nuclear physics as well as lab astrophysics will also benefit from these extreme laser sources. Laser–plasma interaction at such intensities enters a new regime where photon emission and radiation reaction become significant and strong-field quantum electrodynamics (SF-QED) is necessary to account for the quantum effects.
While high-power lasers are under fast development, a central question regarding the ultimate laser intensities researchers can build arises. Basically, the upper limitation for laser intensity in an ideal vacuum condition is considered as the Schwinger field

\[E_s = \frac{2\pi m_e^2 c^3}{e\hbar} \approx 1.32 \times 10^{18} \text{ V/m} \]

The QED theory predicts that laser pulses of \(10^{29} \text{ W/cm}^2\) can provide such field strength in several ways (tight focusing or coherent combining or others), such that they can transfer a large number of virtual particle pairs to real particles. Meanwhile, the generated electron–positron pairs further lose their energies by radiating gamma photons. The laser energy is thus rapidly drained in vacuum.

Studies have shown that even a single pair produced in vacuum by a laser field can lead to rapid depletion of laser energy, i.e., the maximum light intensity is much smaller than \(10^{29} \text{ W/cm}^2\) in vacuum. It points out that full depletion appears when the energy of generated pairs and photons is equivalent to the energy stored in the pulse, at \(E \sim 6.6\alpha E_s \sim 0.05E_s\) (corresponding to \(5 \times 10^{26} \text{ W/cm}^2\) for laser wavelength \(\lambda = 800 \text{ nm}\)).
The upper limit

- The upper limit of the laser field strength in a perfect vacuum is usually considered as the Schwinger field, corresponding to \(\sim 10^{29} \text{ W/cm}^2 \).

- This limit can be investigated under realistic nonideal vacuum conditions and find that intensity suppression appears starting from \(10^{25} \text{ W/cm}^2 \), showing an upper threshold at \(10^{26} \text{ W/cm}^2 \), even if the residual electron density in chamber surpasses \(10^9 \text{ cm}^{-3} \), because the presence of residual electrons triggers the avalanche of quantum electrodynamics cascade that creates many electron and positron pairs.

- The leptons are further trapped within the driving laser field due to radiation reaction, which significantly depletes the laser energy.

- The relationship between the attainable intensity and the vacuum level can be estimated using particle-in-cell simulations tools and theoretical analysis. The results answer a critical problem on the achievable light intensity based on present vacuum conditions and provide a guideline for future hundreds of petawatt class laser development.
In reality, it is impossible to build a perfect vacuum environment for experiments. Typically, the vacuum electron density in a chamber suitable for PW-class lasers is about 10^{11} cm$^{-3}$, provided by ordinary pumping technique (e.g., 10^{-3} Pa for SULF). For laser power above 100 PW, the chamber volume is enlarged by more than tenfold, posing a great challenge to the pump. Another potential drawback is the existence of electrons extracted from optical components (focusing mirror, plasma mirror, etc.) by the passing laser fields.

These residual electrons could serve as seeds to trigger the QED processes when the laser field surpasses a certain threshold.

Specifically, during the laser–electron interaction, nonlinear Compton scattering following $e + n\omega \rightarrow e + \gamma$ will occur, where electrons absorb multiple laser photons and emit high energy γ photons. The radiated γ photons further interact with the strong laser field, generating $e^- e^+$ pairs via the nonlinear Breit–Wheeler process $\gamma + n\omega \rightarrow e^+ + e^-$. These two reaction channels build up positive feedback, i.e., the amount of the pairs and γ photons will be avalanche-like amplified and deplete the laser significantly, known as the QED cascade. It can be triggered for a single pulse with intensity $> 10^{25}$ W/cm2 or two colliding pulses with intensity $> 10^{23}$ W/cm2. For more realistic consideration, the depletion is a dynamic process where the laser intensity gradually decreases during the development of a QED cascade, which changes the rate of photon emission and pair production and the later would again deplete the laser energy.
PIC – Particle In Cell - simulations were performed by including the QED models responsible for the two major reaction channels. **Both the simulation and the theoretical model show that the attainable peak intensity depends on the vacuum.**

At electron density about 10^9 cm$^{-3}$, notable energy drain emerges from 10^{25} W/cm2 and the upper limit of the laser intensity is modified to $\sim 10^{26}$ W/cm2.

Two-dimensional (2D) PIC simulations using the code VLPL (Virtual Laser Plasma Lab) was used. It has implemented a **local constant cross-field approximation** (LCFA), QED–Monte Carlo model accounting for nonlinear Compton scattering and Breit–Wheeler processes.

The peak laser amplitude a is varied from 1500 to 20000, while the vacuum electron density n_e is tuned between 10^{11} and 10^{15} cm$^{-3}$

Under LCFA, the newly generated particles gain energies from the parent particles rather than directly from the laser photons. The latter transfer their energies when accelerating the leptons. In our simulations, laser propagates from the left side of a moving simulation window along the x direction. The window size is 40 μm (x) \times 80 μm (y) resolved by 4000 cells \times 1000 cells. We set two macroparticles for electrons and protons in each cell. The laser beam is linearly polarized along the y axis $[E_L = E_G \cos(\omega t - kx)e_y, B_L = E_G \cos(\omega t - kx)e_z]$, following a Gaussian profile $E_G = [aw_0/\omega(x)]\cos^2[\pi(t - t_f)/2\tau_0]\times \exp[-r^2/w^2(x)]$ focused at $x_f = 240$ μm with normalized peak amplitude $a = eF/\hbar\omega c$ (the corresponding peak intensity $I_{\text{peak}} = (a^2/\lambda^2) \times 1.38 \times 10^{18}$ W/cm2, with wavelength λ in μm, where m is the mass of electron, c is the velocity of light in vacuum, ω is the laser frequency, and k is the laser wave vector.

Another phenomenon limiting the achievable laser intensity is known as radiation-reaction trapping (RRT) in travelling laser field, where the recoiling force of photon emission offsets the pondermotive force, leading to anomalous trapping of leptons in the most intense part of the laser field.
The peak laser field amplitude is well preserved for $a=5000$, Fig. 1(a). However, it declines to be less than 3000 for the other one. The remarkable difference indicates that the attainable light intensity at $n_{e0} = 10^{11}$ cm$^{-3}$ is subject to strong restrictions, and the upper limit appears at $a=10,000$.

The density distributions of electron–positron pairs n_{e+p} and γ photons n_{γ} are shown in Figs. 1(b) and 1(c), where both are about 3 orders of magnitude higher for the $a=10,000$ case. The density profile shows distinctive patterns between the two cases. We notice that at $a=10,000$, high density bunches appear all along the laser beam, while at $a=5000$, density peaks are only seen in the vicinity of highest laser intensity. This is because QED cascade is triggered at the rising edge of the laser pulse for the former such that a large number of electrons and positrons pairs are created at an earlier moment.
A theory that describes the evolution of particle numbers from the QED cascade and give
an evaluation for laser energy depletion consider the γ photon and electron–positron pair
generation rates satisfying the expression:

$$\frac{dN_{e+p}}{dt} = 2\Gamma_e N_{\gamma},$$

$$\frac{dN_{\gamma}}{dt} = \Gamma_\gamma N_{e+p} - \Gamma_e N_{\gamma},$$

where Γ_e and N_{e+p} are the generated rate coefficient of electron–positron pairs and number of their total particles, correspondingly; Γ_γ and N_{γ} are the coefficient and number of γ
photons, respectively. The generation rate of cascade processes is determined by the QED parameter

$$\chi_i = \left| (F_{uv} P^v_i) \right|^2 / E_s m_e c (i = \pm e \text{ or } \gamma)$$

where F_{uv} is the EM field tensor and P^v_i is the particle’s four-momentum
The peak intensity during focusing processes is measured from PIC simulations and compared to the analytical model. The ratio between the simulated peak intensity and the designed intensity decreases sharply when approaching 10^{26} W/cm2 for density from 10^{11} to 10^{15} cm$^{-3}$, corresponding to the energy depletion threshold, Fig. 3c.

The attainable intensity reaches 2×10^{26} W/cm2 for vacuum $\sim 10^8$ cm$^{-3}$. It should be noted that at even lower electron densities ($<10^7$ cm$^{-3}$), the average electron number in the focusing area is less than 1. The cascading effect only occurs when the seeding particle sits in the focal region. In this case, one may not be able to give a definite threshold.

The evolution of N_{e+p} and N_γ based on the above analytical model is given in Figs. 3(a) and 3(b), together with the results collected from PIC simulations. The numbers of both electron–positron pairs and gamma photons undergo exponential growth when the laser interacts with residual electrons, owing to the avalanche-like cascade. When sufficient laser energy is drained, the light intensity declines, and the number of created particles saturates. The above trends are reproduced by the theoretical model.

Fig. 3. (a) N_{e+p} and (b) N_γ evolution for $a = 5000$ (blue solid and pentagrams) and $a = 10,000$ (red dashed and squares) obtained from simulation (symbols) and theoretical analysis (lines); (c) ratio between the measured peak intensity in simulations and the designed one as a function of designed peak intensity under electron densities of $n_{e0} = 10^{15}$ cm$^{-3}$ (blue dotted and squares), 10^{13} cm$^{-3}$ (red dashed and pentagrams), 10^{11} cm$^{-3}$ (black solid and circles). The symbols are results measured from simulation while lines are from the theoretical model. All symbols represent average values for ten simulation cases with different random seeds, while the error bars represent peak intensity quantile of 95% and 5% (error bar gives a confidence interval of 90%), separately. (d) The theoretical prediction of peak intensity distributions as a function of the designed peak intensity and n_{e0} (from 6×10^7 to 10^{15} cm$^{-3}$).
Concluzii

• **Intensitatea maxima care poate fi obținuta pentru un fascicul laser depinde de conditiile de vacuum**

• **Cascadele QED de tip avalansa si RRT (Radiation Reaction Trapping) influentează puternic si limitează maximul intensității laserului din cauza electronilor reziduali din calea pulsurilor laser**

• **Simularile autorilor YITONG WU, LIANGLIANG JI, AND RUXIN LI, Vol. 9, No. 4 / April 2021 / Photonics Research sugerează ca intensitatea peak-ului nu mai creste începând de la ~ 10^{25}W/cm^2 si ea o limita maxima de 10^{26}W/cm^2 se atinge pentru o densitate a electronilor in vid de 10^9cm^{-3}**

Further Reading

Strong field physics pursued with petawatt lasers, Vishwa Bandhu Pathak, Seong Ku Lee, Ki Hong Pae, Calin Ioan Hojbota, Chul Min Kim and Chang Hee Nam, AAPPS Bulletin (2021) 31:4 https://doi.org/10.1007/s43673-021-00004-5

Quantum electrodynamics experiments with colliding petawatt laser pulses

Polarized QED cascades
Daniel Seip, Christopher P Ridgers, DarioDel Sorbo and Alec G R. Thomas

Towards realistic simulations of QED cascades: Non-ideal laser and electron seeding effects
Archana Sampath, and Matteo Tamburini
Phys. Plasmas **25**, 083104 (2018); https://doi.org/10.1063/1.5022640

QED cascade with 10 PW-class lasers
Martin Jirka 1,2, Ondrej Klimo1,2, Marija Vranic 3, Stefan Weber1 & Georg Korn1
www.nature.com/scientificreportswwwwww
www.nature.com/scientificreports, published online 10 November 2017